A new regularity criterion for weak solutions to the Navier-Stokes equations

نویسنده

  • Yong Zhou
چکیده

In this paper we obtain a new regularity criterion for weak solutions to the 3-D Navier-Stokes equations. We show that if any one component of the velocity field belongs to L([0, T ); L(R)) with 2 α + 3 γ ≤ 1 2 , 6 < γ ≤ ∞, then the weak solution actually is regular and unique. Titre. Un nouveau critère de régularité pour les solutions faibles des équations de Navier-Stokes Resumé. Dans cet article, on obtient un nouveau critère de régularité pour les solutions faibles des équations de Navier-Stokes en dimension 3. On démontre que si une conposante quelconque du champ de vitesse appartient à L([0, T ]; L(R)) avec 2 α + 3 γ ≤ 1 2 , 6 < γ ≤ ∞, alors la solution faible est régulière et unique. Mathematics Subject Classification(2000): 35B45, 35B65, 76D05

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regularity Criteria Involving the Pressure for the Weak Solutions to the Navier-stokes Equations

In this paper we consider the Cauchy problem for the n-dimensional Navier-Stokes equations and we prove a regularity criterion for weak solutions involving the summability of the pressure. Related results for the initial-boundary value problem are also presented.

متن کامل

Regularity Criteria in Weak Spaces for Navier-stokes Equations in R

In this paper we establish a Serrin type regularity criterion on the gradient of pressure in weak spaces for the Leray-Hopf weak solutions of the Navier-Stocks equations in R. It partly extends the results of Zhou[2] to L w spaces instead of L spaces.

متن کامل

A Regularity Criterion for the Angular Velocity Component in Axisymmetric Navier-stokes Equations

We study the non-stationary Navier-Stokes equations in the entire three-dimensional space under the assumption that the data are axisymmetric. We extend the regularity criterion for axisymmetric weak solutions given in [10].

متن کامل

The Navier-stokes Equations in Nonendpoint Borderline Lorentz Spaces

It is shown both locally and globally that Lt (L 3,q x ) solutions to the three-dimensional Navier-Stokes equations are regular provided q 6= ∞. Here L x , 0 < q ≤ ∞, is an increasing scale of Lorentz spaces containing Lx. Thus the result provides an improvement of a result by Escauriaza, Seregin and Šverák ((Russian) Uspekhi Mat. Nauk 58 (2003), 3–44; translation in Russian Math. Surveys 58 (2...

متن کامل

On Regularity Criteria in Terms of Pressure for the Navier-stokes Equations in R

In this paper we establish a Serrin-type regularity criterion on the gradient of pressure for the weak solutions to the Navier-Stokes equations in R3. It is proved that if the gradient of pressure belongs to Lα,γ with 2/α + 3/γ ≤ 3, 1 ≤ γ ≤ ∞, then the weak solution is actually regular. Moreover, we give a much simpler proof of the regularity criterion on the pressure, which was showed recently...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005